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Effect algebras have important applications in the foundations of quantum
mechanics and in fuzzy probability theory. An effect algebra that possesses a
convex structure is called a convex effect algebra. Our main result shows that
any convex effect algebra admits a representation as a generating initial interval
of an ordered linear space. This result is analogous to a classical representation
theorem for convex structures due to M. H. Stone. We also give a relationship
between a convex effect algebra and a statistical model called a convex effect-
state space.

1. INTRODUCTION

An algebraic structure called an effect algebra has recently been intro-

duced for investigations in the foundations of quantum mechanics [3, 13,

14]. Equivalent structures called D-posets and generalized orthoalgebras have
also been studied [8, 10, 11, 15, 22, 23]. Moreover, effect algebras play a

fundamental role in recent investigations of fuzzy probability theory [1, 2,

4, 5, 19]. In the quantum mechanical framework, the elements of an effect

algebra P represent quantum effects and these are important for quantum

statistics and quantum measurement theory [3, 6, 7]. One may think of a
quantum effect as an elementary yes±no measurement that may be unsharp

or imprecise. In the fuzzy probability setting, elements of P represent fuzzy

events which are statistical events that may not be crisp or sharp. The quantum

effects and fuzzy events are then used to construct general quantum measure-

ments (or observables) and fuzzy random variables. The structure of an effect

algebra is given by a partially defined binary operation % that is used to
form a combination a % b of effects a, b P P. The element a % b represents
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a statistical combination of a and b whose probability of occurrence equals

the sum of the probabilities that a and b occur individually.

The common examples of effect algebras that are employed in practice
also possess a convex structure. For example, if a is a quantum effect and

l P [ 0, 1], then l a represents the effect a attentuated by a factor of l . A

similar interpretation is given for fuzzy events. Then l a % (1 2 l )b is a

generalized convex combination that can be constructed in practice. Due

to the operational significance of such combinations it seems desirable to

investigate effect algebras that possess an additional convex structure and
we call them convex effect algebras.

General convex structures have important applications to studies in color

vision, decision theory, operational quantum mechanics, and economics [12,

16, 17, 27, 28]. A classical representation theorem of M. H. Stone [16, 26]

has sometimes been useful in these studies. This theorem states that certain

convex structures can be represented as convex subsets of a real linear space.
In this paper, we present an analogous theorem for convex effect algebras.

Although there are some similarities between our proof and that of Stone, a

much more delicate argument must be used because we have to preserve the

effect algebra structure as well as the convex structure. Also, since our

structure is richer than a convex structure alone, we obtain a stronger theorem.
In Stone’ s theorem, a convex structure is represented by a convex base of a

positive cone K that generates an ordered linear space (V, K ). Our theorem

states that a convex effect algebra can be represented by an initial interval

[ u , u] that generates an ordered linear space (V, K ). An interval [ u , u] in

(V, K ) has a natural effect algebra structure and we call [ u , u] a linear effect

algebra. A linear effect algebra is a special case of an interval effect algebra
which has recently been investigated [14]. In this note, we shall only state

the representation theorem and the proof will appear elsewhere [20]. We

shall also give a relationship between a convex effect algebra and a statistical

model called a convex effect-state space.

2. DEFINITIONS AND BASIC RESULTS

An effect algebra is an algebraic system (P, 0, 1, % ) where 0, 1 are

distinct elements of P and % is a partial binary operation on P that satisfies

the following conditions.

(E1) If a % b is defined, then b % a is defined and b % a 5 a % b.
(E2) If a % b and (a % b) % c are defined, then b % c and a % (b %

c) are defined and a % (b % c) 5 (a % b) % c.

(E3) For every a P P there exists a unique a8 P P such that a % a8 is

defined and a % a8 5 1.
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(E4) If a % 1 is defined, then a 5 0.

We define a # b if there exists a c P P such that a % c 5 b. It can

be shown that (P, 0, 1, # ) is a bounded poset and a % b is defined if and
only if a # b8 [11, 13]. If a # b8, we write a ’ b. An important property

of an effect algebra is the cancellation law, which states that a a % b 5 a %
c implies b 5 c. Moreover, it can be shown that a9 5 a and that a # b
implies b8 # a8 for every a, b P P [11, 13].

An effect algebra P is convex if for every a P P and l P [ 0, 1] # R
there exists an element l a P P such that the following conditions hold.

(C1) If a , b P [ 0, 1] and a P P, then a ( b a) 5 ( a b )a.

(C2) If a , b P [ 0, 1] with a 1 b # 1 and a P P, then a a ’ b a and

( a 1 b )a 5 a a % b a.

(C3) If a, b P P with a ’ b and l P [ 0, 1], then l a ’ l b and l (a %
b) 5 l a % l b.

(C4) If a P P, then 1a 5 a.

A map ( l , a) j l a that satisfies (C1)±(C4) is an example of a bimorph-

ism from [ 0, 1] 3 P into P [10] and we call this map a convex structure on

P. Notice that 0a 5 0 for every a P P. Indeed, by (C2) and (C4) we have

0a % a 5 ( 0 1 1)a 5 1a 5 a 5 0 % a

so by the cancellation law 0a 5 0.

The effect algebras that arise in practice are usually convex. For example,

let H be a complex Hilbert space and let %(H ) be the set of operators on H
that satisfy 0 # A # I, where we are using the usual ordering of bounded
operators. For A, B P %(H ), we write A ’ B if A 1 B P %(H ) and in this

case we define A % B 5 A 1 B. It is clear that (%(H ), 0, I, % ) is an effect

algebra and we call %(H ) a Hilbert space effect algebra. Hilbert space effect

algebras are important in foundational studies of quantum mechanics [6, 7,

9, 21, 24, 25]. For l P [ 0, 1] and A P %(H ), l A is the usual scalar

multiplication for operators. This gives a convex structure on %(H ), so %(H )
becomes a convex effect algebra. For another example, let ( V , !) be a

measurable space and let %( V , !) be the set of measurable functions on V
with values in [ 0, 1]. If we define % and scalar multiplication l f analogously

as in the previous example, we see that %( V , !) is a convex effect algebra.

The elements of %( V , !) are called fuzzy events and they are the basic

concepts in fuzzy probability theory [1, 2, 4, 5, 19].
We now consider a more general type of convex effect algebra called

a linear effect algebra. It is no accident that the previous two examples are

linear effect algebras because we shall show that any convex effect algebra

is equivalent to a linear effect algebra. A linear effect algebra is an initial
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interval in the positive cone of an ordered linear space. We now give the

precise definitions.

Let V be a real linear space with zero u . A subset K of V is a positive
cone if R + K # K, K 1 K # K, and K ù ( 2 K ) 5 {u }. For x, y P V we

define x # K y if y 2 x P K. Then # K is a partial order on V and we call

(V, K ) an ordered linear space with positive cone K. We say that K is

generating if V 5 K 2 K. Let u P K with u Þ u and form the interval

[ u , u] 5 {x P K: x # K u}

For x, y P [ u , u] we write x ’ y if x 1 y # K u and in this case we define

x % y 5 x 1 y. It is clear that ([ u , u], u , u, % ) is an effect algebra with x8 5
u 2 x for every x P [ u , u]. This is an example of an interval effect algebra
[14]. It is also easy to check that [ u , u] is a convex subset of K. It follows

that if l P [ 0, 1] and x P [ u , u], then

l x 5 l x 1 (1 2 l ) u P [ u , u]

A straightforward verification shows that ( l , x) j l x is a convex structure

on [ u , u] so that [ u , u] is a convex effect algebra which we call a linear
effect algebra. We say that [ u , u] generates K if K 5 R + [ u , u] and we say

that [ u , u] generates V if [ u , u] generates K and K generates V. A simple

example of a linear effect algebra is the unit interval [ 0, 1] in the linear space

R with its usual order. Of course, [ 0, 1] generates R . Two ordered linear
spaces (V1, K1) and (V2, K2) are order isomorphic if there exists a linear

bijection T: V1 ® V2 such that T(K1) 5 K2.

Because of the associative law (E2), we do not have to write parentheses

for orthogonal sums of three or more elements. If a is an element of an effect

algebra and a % a % ? ? ? % a is defined (n summands), then we denote this
element by na. Our first result summarizes some basic properties of a convex

effect algebra [20].

Lemma 2.1. Let P be a convex effect algebra. (i) If a # b, then l a #
l b for every l P [ 0, 1]. (ii) If 0 # a # b # 1, then a a # b a for every

a P P. (iii) If a , b P [ 0, 1] with a 1 b # 1, then a a ’ b b for every a,

b P P. (iv) For l P ( 0, 1), l a 5 0 if and only if a 5 0. (v) If na is defined

for n P N and 0 # l # 1/n, then l (na) 5 ( l n)a. (vi) If na is defined for
n P N and l P [ 0, 1], then n( l a) is defined and n( l a) 5 l (na). (vii) If l P
( 0, 1] and l a 5 l b, then a 5 b. (viii) If a Þ 0, a , b P [ 0, 1], and a a 5
b a, then a 5 b .

It follows from Lemma 2.1(iii) that a convex effect algebra P is ª convexº

in the following sense. If l P [ 0, 1] and a, b P P, then l a % (1 2 l )b is

defined and hence is an element of P.
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If P and Q are effect algebras, a map f : P ® Q is additive if a ’ b
implies that f (a) ’ f (b) and f (a % b) 5 f (a) % f (b). An additive map f
that satisfies f (1) 5 1 is called a morphism . A morphism f : P ® Q for
which f (a) ’ f (b) implies that a ’ b is called a monomorphism . A surjective

monomorphism is called an isomorphism . It is easy to show that if f is an

isomorphism, then f is injective and f 2 1 is an isomorphism. If P and Q are

convex effect algebras, a morphism f : P ® Q is called an affine morphism
if f ( l a) 5 l f (a) for every l P [ 0, 1], a P P. It follows from Lemma 2.1(iii)

that an affine morphism preserves convex combinations in the sense that if
l P [ 0, 1] and a, b P P, then

f ( l a % (1 2 l )b) 5 l f (a) % (1 2 l ) f (b)

An isomorphism f : P ® Q that is affine is called an affine isomorphism
and if such a f exists, we say that P and Q are affinely isomorphic. Notice

that if f : P ® Q is an affine isomorphism, then f 2 1: Q ® P is also an

affine isomorphism. Indeed, let l P [ 0, 1] and b P Q. Then there exists an
a P P such that f (a) 5 b so that f ( l a) 5 l b. Hence,

f 2 1( l b) 5 l a 5 l f 2 1(b)

Lemma 2.2. If P is a convex effect algebra, Q is an effect algebra, and

f : P ® Q is an isomorphism, then there exists a unique convex structure

on Q such that f is an affine isomorphism.

3. REPRESENTATION THEOREM

We now present a representation theorem for convex effect algebras

[20]. This theorem is analogous to a representation theorem for convex

structures due to M. H. Stone [16, 26].

Theorem 3.1. If (P, 0, 1, % ) is a convex effect algebra, then P is affinely

isomorphic to a linear effect algebra [ u , u] that generates an ordered linear

space (V, K ) and the effect algebra order # on [ u , u] coincides with linear
space order # K restricted to [ u , u]. Moreover, (V, K ) is unique in the sense

that if P is affinely isomorphic to a linear effect algebra [ u 1, u1] that generates

(V1, K1), then (V1, K1) is order isomorphic to (V, K ).

If P is an effect algebra, a morphism v : P ® [ 0, 1] # R is called a

state. We denote the set of states on P by V (P). The states correspond to

initial conditions or preparations of a system and v (a) is interrupted as the
probability that the effect a occurs when the system is in the state v .

Lemma 3.2. If P is a convex effect algebra, then every v P V (P) is affine.

Proof. Let R be the set of rationals in [ 0, 1]. If n P N , then we have
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v (a) 5 v 1 1

n
a % ? ? ? %

1

n
a 2 5 n v 1 1

n
a 2 (n summands)

so v (1/n a) 5 1/n v (a). If m, n P N , m # n, then

v 1 m

n
a 2 5 v 1 1

n
a % ? ? ? %

1

n
a 2 5 m v 1 1

n
a 2 5

m

n
v (a) (m summands)

Hence, v (ra) 5 r v (a) for every r P R. If l P [ 0, 1], then

v ( l a) # inf {v (ra): r P R, r $ l } 5 v (a) inf {r P R: r $ l }

5 l v (a)

Similarly, v ( l a) $ l v (a) so the result follows. n

There are examples of effect algebras for which V (P) 5 0¤. It can be

shown that if P is a convex effect algebra, then V (P) Þ 0¤. However, even

if P is convex, V (P) may contain only one element and it is important in

applications to have a rich supply of states. We say that V (P) is order
determining if v (a) # v (b) for all v P V (P) implies that a # b. We now

give a condition on a convex effect algebra P that ensures an order-determining
set of states. We say that P is archimedean if whenever a, b, c P P with

a ’ b and c # a % 1/n b for every n P N , then c # a. It is easy to see that

if V (P) is order determining, then P is archimedean. Indeed, suppose that

c # a % 1/n b for every n P N . Then for every v P V (P), n P N , we have

v (c) # v (a) 1 1/n v (b). Hence, v (c) # v (a) for v P V (P), so that c # a.

The following result, which relies on Theorem 3.1 and Lemma 3.2, shows
that the converse holds.

Theorem 3.3. If P is a convex effect algebra, then V (P) is order determin-

ing if and only if P is archimedean.

4. EFFECT-STATE SPACES

In the previous sections we assumed that the effects for a physical system

formed an effect algebra P and that the states were morphisms from P into

[ 0, 1] # R . We now treat the effects and states as undefined concepts and

derive their properties from a few simple, natural axioms.

Most statistical theories for physical systems contain two basic primitive
concepts, namely effects and states. The effects correspond to simple yes±no

measurements or experiments and the states correspond to preparation proce-

dures that specify the initial conditions of the system being measured. For

example, a particle detector with domain of sensitivity D # R 3 corresponds

to an effect. If a particle of a certain type is in D at a certain time, then the
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detector registers (yes) and otherwise it does not register (no). This effect

either occurs (is observed) or does not occur (is not observed), so the measure-

ment has only two values, yes or no. We also include the possibility that the
detector is not perfectly accurate. The state of the system prescribes the

initial conditions of the tested particles; for example, their initial position,

momentum, energy, or spin. Usually, each effect a and state s experimentally

determine a probability F(a, s) that the effect a occurs when the system has

been prepared in the state s. For a given physical system, denote its set of

possible effects by % and its set of possible states by 6. In a reasonable
statistical theory, the probability function F satisfies two axioms that are

given in the following definition.

An effect-state space is a triple (%, 6, F ) where % and 6 are nonempty

sets and F is a mapping from % 3 6 into [ 0, 1] # R satisfying:

(ES1) there exist elements 0, 1 P % such that F( 0, s) 5 0, F(1, s) 5
1 for every s P 6.

(ES2) if F(a, s) # F(b, s) for every s P 6, then there exists a unique

c P % such that F(a, s) 1 F(c, s) 5 F(b, s) for every s P 6.

The elements 0, 1 in (ES1) correspond to the null effect that never

occurs and the unit effect that always occurs, respectively. Condition (ES2)
postulates that if a has a smaller probability of occurring than b in every

state, then there exists a unique effect c which when combined with a gives

the probability that b occurs in every state. The next lemma is proved in ref. 18.

Lemma 4.1. Let (%, 6, F ) be an effect-state space. If F(a, s) 1 F(b, s) #
1 for every s P 6, then there exists a unique c P % such that F(c, s) 5 F(a,

s) 1 F(b, s) for every s P 6.

For an effect-state space (%, 6, F ) we write a ’ b if F(a, s) 1 F(b, s) #
1 for every s P 6 and the unique c in Lemma 4.1 is denoted c 5 a % b.

The following theorem, which is proved in ref. 18, shows that effect algebras

arise naturally from effect-state spaces.

Theorem 4.2. If (% 6, F ) is an effect-state space and S 5 {F( ? , s): s P
6}, then (%, 0, 1, % ) is an effect algebra with an order-determining set of

states S. Conversely, if (P, 0, 1, % ) is an effect algebra and S is an order-

determining set of states on P, then (P, S, F ) is an effect-state space where

F: P 3 S ® [ 0, 1] is defined by F(a, s) 5 s(a).

We now show that a natural convex structure can be defined for an
effect-state space (%, 6, F ). We say that (%, 6, F ) is a convex effect-state
space if for every a P % and l P [ 0, 1] # R there exists an element l a P
% such that F( l a, s) 5 l F(a, s) for every s P 6. The unique element l a P
% is interpreted as the effect a attenuated by the factor l . If (P, 0, 1, % ) is
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a convex effect algebra and S is an order-determining set of states on P, then

it follows from Theorem 4.2 and Lemma 3.2 that (P, S, F ) is a convex effect-

state space where F: P 3 S ® [ 0, 1] is defined by F(a, s) 5 s(a). The next
result shows that the converse holds.

Theorem 4.3. If (%, 6, F ) is a convex effect-state space and S 5 {F( ? , s):
s P 6}, then (%, 0, 1, % ) is a convex effect algebra with an order-determining
set of states S.

Proof. It follows from Theorem 4.2 that (%, 0, 1, % ) is an effect algebra

with an order-determining set of states S. It only remains to show that % is
convex; that is, properties (C1)±(C4) hold. To verify (C1) we have for every

s P 6

F( a ( b a), s) 5 a F( b a, s) 5 ( a b )F(a, s) 5 F(( a b )a, s))

Hence, a ( b a) 5 ( a b )a. To verify (C2), suppose that a , b P [ 0, 1] with a
1 b # 1. Then for every s P 6 we have

F( a a, s) 1 F( b a, s) 5 a F(a, s) 1 b F(a, s) 5 ( a 1 b )F (a, s)

5 F (( a 1 b )a, s) # 1

Hence, a a ’ b a and ( a 1 b )a 5 a a % b a. To verify (C3), suppose that

a ’ b and l P [ 0, 1]. Then for every s P 6 we have

F( l a, s) 1 F( l b, s) 5 l [F(a, s) 1 F(b, s)] 5 l F (a % b, s)

5 F( l (a % b), s)

Hence, l a ’ l b and l (a % b) 5 l a % l b. Finally, (C4) holds because

F(1a, s) 5 F(a, s) for every s P 6. n

REFERENCES

1. E. G. Beltrametti and S. Bugajski, A classical extension of quantum mechanics, J. Phys.

A: Math. Gen. 28, 3329±3343 (1995).

2. E. G. Beltrametti and S. Bugajski, Quantum observables in classical frameworks, Int. J.

Theor. Phys. 34, 1221 ±1229 (1995).

3. E. G. Beltrametti and S. Bugajski, Effect algebras and statistical physical theories, to appear.

4. S. Bugajski, Fundamentals of fuzzy probability theory, Int. J. Theor. Phys. 35, 2229±

2244 (1996).

5. S. Bugajski, K.-E. Hellwig, and W. Stulpe, On fuzzy random variables and statistical maps,

Rep. Math. Phys., to appear.

6. P. Busch, M. Grabowski, and P. Lahti, Operational Quantum Physics, Springer-Verlag,

Berlin, 1995.

7. P. Busch, P. Lahti, and P. Mittlestaedt, The Quantum Theory of Measurement , Springer-

Verlag, Berlin, 1991.



Convex Structure and Effect Algebras 3187

8. G. Cattaneo and G. NisticoÁ , Complete effect-preparation structures: Attempt of a unification

of two different approaches to axiomatic quantum mechanics, Nuovo Cimento 90B, 161±

175 (1985).

9. E. B. Davies, Quantum Theory of Open Systems, Academic Press, London, 1976.

10. A. DvurecÏ enskij, Tensor products of difference posets, Trans. Amer. Math. Soc. 147 ,

1 043±1057 (1995).

11. A. DvurecÏ enskij and S. PulmannovaÂ, Difference posets, effects, and quantum measurements,

Int. J. Theor. Phys. 33, 819±85 0 (1994).

12. R. Evans, The Perception of Color, Wiley, New York, 1974.

13. D. Foulis and M. K. Bennett, Effect algebras and unsharp quantum logics, Found. Phys.

24, 1331±1352 (1994).

14. D. Foulis and M. K. Bennett, Interval algebras and unsharp quantum logics, to appear.

15. R. Giuntini and H. Greuling, Toward a formal language for unsharp properties, Found.

Phys. 19, 931±945 (1989).

16. S. Gudder, Convexity and mixtures, SIAM Review 19, 221±240 (1977).

17. S. Gudder, Convex structures and operational quantum mechanics, Comm. Math. Phys.

29, 249±264 (1973).

18. S. Gudder, D-Algebras, Found. Phys. 26, 813±822 (1996).

19. S. Gudder, Fuzzy probability theory, Demonstratio Math., to appear.

20. S. Gudder and S. PulmannovaÂ, Representation theorem for convex effect algebras, to appear.

21. A. S. Holevo, Probabilistic and Statistical Aspects of Quantum Theory, North-Holland ,

Amsterdam, 1982.

22. F. KoÃpka, D-posets and fuzzy sets, Tatra Mountains Math. Publ. 1, 83±87 (1992).

23. F. KoÃpka and F. Chovanec, D-posets, Math. Slovaca 44, 21±34 (1994).

24. K. Kraus, States, Effects, and Operations , Springer-Verlag, Berlin, 1983.

25. G. Ludwig, Foundations of Quantum Mechanics , Springer-Verlag, Berlin, 1983.

26. M. H. Stone, Postulates for the barycentric calculus, Ann. Math. 29, 25±30 (1949).

27. R. M. Thrall, C. H. Coombs, and R. L. Davis, Decisions, Processes , Wiley, New York, 1954.

28. J. von Neumann and O. Morgenstern, Theory of Games and Economic Behavior, Princeton

University Press, Princeton, New Jersey, 1944.


